

Fluvial Geomorphology

Branch of Science concerned with influence of Rivers and Streams on the formation of the Earth's surface

Governing Processes:

- Erosion
- Sediment Transport
- Deposition

Bankfull Discharge

- Controls Average, Long-Term
 Channel Form
- Corresponds to the Discharge that Channel Maintenance is Most Effective over the Long-Term
- Low Recurrence Interval
- Lower Recurrence Interval in Urban Watersheds

Bankfull Indicators

- Flat, Depositional Surface Adjacent to Active Channel
- Height of Depositional Features (Point Bars)
- Change in Vegetation
- Slope or Topographic Breaks or Changes Along the Bank
- Change in Particle Size of **Bed Materials**

Entrenchment Ratio (ER)

The Vertical Containment of the Stream or the Degree of Incision in the Valley Floor

Entrenchment Ratio = Width of Floodprone Area Width of Bankfull Channel

- •Entrenched (Ratio < 1.4)
- •Moderately Entrenched (1.4 2.2)
- •Slightly Entrenched (Ratio > 2.2)

Natural vs. Man-Made Channels

Shear Stress

Channelized Stream

Natural Stream

Discharge Return Interval

Differences

CONCEPT	TRADITIONAL	GEOMORPHOLOGY
Time	Short-term	Long-term
Model	Theoretical	Field Measurement
Water	Clear	Sediment Laden
Spatial Scale	Reach	Watershed
Boundary	Rigid	Mobile
Maintenance	High	Sustainable
Design Flow	100 yr.	Bankfull Flow
Factor of Safety	Conservative	Balance of Forces

Natural Channel Design

Process by which new or re-constructed stream channels and their associated flood plain riparian systems are designed to be naturally functional, stable, healthy, productive and sustainable.

Soil Bioengineering

The Use of Living and Non-Living Materials to Provide Soil Reinforcement and Prevent Erosion

Reference Reach **Approach**

- Stable Reference Stream in Same Hydro-physiographical Region
- Streams Exist in Dynamic State of Equilibrium
- Requires a Number of Geomorphic Measurements - Range of **Dimensionless Ratios**
- Applies to Streams where Upper Ranges of Depositional Particles Begin to Mobilize at Bankfull
- In Sand Bed Streams Additional **Analytical Analyses is Necessary**

Buffalo Run Stream Restoration

Natural Channel Designs

Reach A (Upstream)

Reach B (Downstream)

Design Processes Step 1: Watershed Analysis

Design Process Reference Reach

RIVERMorph 2.1 Professional

RIVERMorph— ■--**~** Buffalo Run

♣-n Reference Reach

😝 📘 🔄 Buffalo Run

😞 🛭 🕢

Reference Reach | Boundary Conditions | Results | Plan View | Long Pro | Typical Sections |

Boulder Structures

Software Overview

- Software Features an Intuitive Graphical User Interface
- All Data Stored in a Database
- Measurements/Processing of Data is Graphically Oriented
- Greatly Simplifies
 Processing of Geomorphic
 Data

Rivers and Reaches

River Scale

Reach Scale - (20 to 30) x W_{bkf}

RIVERMorph Components

CHANNEL MEASUREMENT

- Survey Data (Differential & Total Station)
- Cross Sections
- Longitudinal Profile
- Particle Size Analyses
 (Pebble Count & Sieve Analysis)
- Stream Classification

RIVERMorph Components

ANALYSES & DESIGN

- Pfankuch Channel Stability
- NRCS Stream Visual Assessment Protocol
- Natural Channel Design Using the Reference Reach Approach
- Vane Structures

RIVERMorph Components

CALCULATORS & TOOLS

- GIS
- Regional Curves
- Resistance Equations
- Regime Equations
- TR-55 Peak Flow
- Gage Analysis

